Abstract

Over the last decades, the incidence of type 2 diabetes (T2D) is increasing substantially. Emerging evidences from epidemiological studies have shown the association between higher intake of soy isoflavones and reduced risk of T2D and its associated health risks. Daidzein, a soy isoflavone, has been found to have a promising therapeutic potential in managing T2D pathophysiology. Fermented soybean is the major source of daidzein; however, it can also be formed via the consumption of its glycosylated moiety, daidzin with subsequent hydrolysis by intestinal bacterial enzyme. Many studies reported the prophylactic effect of daidzein on the improvement of hyperglycemia, insulin resistance, dislipidemia, obesity, inflammation, and other complications associated with T2D. The molecular mechanisms underlying the action of daidzein include diverged pathways where daidzein has been shown to interact with several signaling molecules and receptors to achieve desirable effect. Although the specific molecular mechanism is still elusive, further studies are thus needed to understand it in detail. In this review, we discuss the antidiabetic potential of daidzein with respect to the evidences from various clinical, preclinical, and cell culture studies and the underlying molecular mechanism in a precise way to have a comprehensive account on this isoflavone with promising therapeutic potential. © 2018 BioFactors, 44(5):407-417, 2018.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.