Abstract

The fish are incorporated with ice to preserve their freshness when sold on the market. Ordinary people can only detect its freshness with some basic freshness knowledge. Therefore, non-destructive fish freshness inspection is an innovative solution to help. This dataset provides a medium to develop a system for non-destructive detection of fish freshness. There are three data variations: sensor data, images, and organoleptic examination. This dataset includes three fish species: mackerel, tilapia, and tuna, using 21 fish of each species. Data generation was carried out for 11 days, where 800 MQ (Metal Oxide) 135 and TGS (Taguchi Gas Sensor) 2602 sensor data and 80 images were generated every day. Organoleptic examinations were carried out using the Indonesian National Standard (SNI) 2729-2013 on six parameters: eyes, gills, body surface mucus, meat, smell, and body textures. This dataset can be used to develop a fish freshness detection system, regression modeling to estimate the deterioration in fish freshness, and standard grouping of freshness classes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.