Abstract

Specialized hardware accelerators, particularly those that are programmable and flexible to target multiple problems in their domain, have proven to provide orders of magnitude speedup and energy efficiency. However, their design requires extensive manual effort, due to the need for hardware-software codesign to balance the degree and forms of specialization to the domains or program behaviors of interest. This article provides the first steps towards one approach for automating much of these processes. The insight behind our work is to recognize that decoupled spatial architectures both define a rich design space with many tradeoffs for different kinds of applications, and also can be composed out of a simple set of well-defined primitives. Therefore, we propose a modular accelerator design framework, DAEGEN, a.k.a. Decoupled Access Excution Accelerator Generator. This article defines an initial compiler and architecture primitives, and we discuss key challenges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.