Abstract
BackgroundIdiopathic pulmonary fibrosis (IPF) is a chronic and progressive fibrotic lung disease with poor prognosis and few treatment options. Dapper homolog 2 (DACT2), a member of the DACT gene family, plays crucial roles in tissue development and injury. However, its functions and molecular mechanisms in IPF remain largely unknown. We aimed to investigate the role of DACT2 in the development of pulmonary fibrosis and the therapeutic potential of targeting DACT2 related signaling pathways. MethodsIn our study, adeno-associated virus serotype 6 (AAV6)-mediated DACT2 overexpression was assessed in several mice models of experimental pulmonary fibrosis in vivo. The role of DACT2 in lung myofibroblast differentiation was determined by DACT2 overexpression in vitro. The glucose uptake, extracellular acidification rate, intracellular adenosine-triphosphate (ATP) level and lactate levels of myofibroblasts were detected after DACT2 overexpression. The LDHA degradation rate and colocalization with lysosomes were monitored as well. ResultsIntratracheal administration of AAV6-mediated DACT2 overexpression apparently attenuated pulmonary fibrosis in experimental pulmonary fibrosis models. In vitro experiments revealed that DACT2 inhibited TGF-β-induced myofibroblast differentiation by promoting lysosome-mediated LDHA degradation and thus suppressing glycolysis in myofibroblasts. ConclusionIn conclusion, our findings support for DACT2 as a novel pharmacological target for pulmonary fibrosis treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.