Abstract

BackgroundDacts are multi-domain adaptor proteins. They have been implicated in Wnt and Tgfβ signaling and serve as a nodal point in regulating many cellular activities. Dact genes have so far only been identified in bony vertebrates. Also, the number of Dact genes in a given species, the number and roles of protein motifs and functional domains, and the overlap of gene expression domains are all not clear. To address these problems, we have taken an evolutionary approach, screening for Dact genes in the animal kingdom and establishing their phylogeny and the synteny of Dact loci. Furthermore, we performed a deep analysis of the various Dact protein motifs and compared the expression patterns of different Dacts.ResultsOur study identified previously not recognized dact genes and showed that they evolved late in the deuterostome lineage. In gnathostomes, four Dact genes were generated by the two rounds of whole genome duplication in the vertebrate ancestor, with Dact1/3 and Dact2/4, respectively, arising from the two genes generated during the first genome duplication. In actinopterygians, a further dact4r gene arose from retrotranscription. The third genome duplication in the teleost ancestor, and subsequent gene loss in most gnathostome lineages left extant species with a subset of Dact genes. The distribution of functional domains suggests that the ancestral Dact function lied with Wnt signaling, and a role in Tgfβ signaling may have emerged with the Dact2/4 ancestor. Motif reduction, in particular in Dact4, suggests that this protein may counteract the function of the other Dacts. Dact genes were expressed in both distinct and overlapping domains, suggesting possible combinatorial function.ConclusionsThe gnathostome Dact gene family comprises four members, derived from a chordate-specific ancestor. The ability to control Wnt signaling seems to be part of the ancestral repertoire of Dact functions, while the ability to inhibit Tgfβ signaling and to carry out specialized, ortholog-specific roles may have evolved later. The complement of Dact genes coexpressed in a tissue provides a complex way to fine-tune Wnt and Tgfβ signaling. Our work provides the basis for future structural and functional studies aimed at unraveling intracellular regulatory networks.

Highlights

  • IntroductionDact has been implicated in the suppression of Tgfβ-dependent wound healing and Nodal-dependent mesoderm induction due to its ability to facilitate lysosomal degradation of Alk5 [6,7,10]

  • Searches for Dact genes in the animal kingdom Identification of new members of the gnathostomeDact gene family Currently, three Dact family members are known in mouse and humans, two Dact genes have been identified in the chicken, one in Xenopus and two in the zebrafish [3,4,24,25,26,27,28]

  • This study traced the evolution of Dact genes and with it, the evolution of a molecular system that allows the simultaneous control of Wnt and Tgfβ signaling

Read more

Summary

Introduction

Dact has been implicated in the suppression of Tgfβ-dependent wound healing and Nodal-dependent mesoderm induction due to its ability to facilitate lysosomal degradation of Alk5 [6,7,10] In addition to these established roles, Dact proteins have been shown to stabilize p120 Catenin (a mediator of Cadherin function and Rho GTPases) which in turn sequesters the transcriptional repressor Kaiso, leading to the activation of Kaiso targets [11]. Dact proteins have been shown to modulate Wnt signaling mediators in a ligand-independent fashion: Dact proteins shuttle between the nucleus and cytoplasm, and can block nuclear β-Catenin function by disrupting β-Catenin/Lef complexes and enhancing Lef1-HDAC interaction [12] They can promote Tcf/Lef function when the Dact N-terminal domain interacts with these transcription factors [13]. Dact proteins have emerged as nodal points in the simultaneous control of the various Wnt and Tgfβ signaling pathways

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.