Abstract
Four-level pulse amplitude modulation (PAM-4) is widely regarded as the modulation format of choice for the next generation of 400 gigabit Ethernet short-reach optical transceiver. However, generating and receiving PAM-4 at line rates of 112 Gb/s has proven challenging, without relying on power-hungry tools as digital signal processing and digital-to-analog converters, as it requires linearity from the E/O-components in the link and/or predistortion techniques. Moving the binary to multilevel conversion to the optical domain would greatly relax these requirements. Electroabsorption-based transceivers would be ideally suited for this type of data center interconnects as they are capable of combining low-power and high bandwidth operation with a very compact layout, removing the need for large travelling wave structures and dedicated 50 Ω terminations. In this paper, we present a novel transmitter topology for generating PAM-4 using two binary-driven electroabsorption modulators in parallel. Using this approach, we achieve superior performance with respect to a single, but identical multilevel-driven EAM. Finally, we demonstrate the first silicon-based modulator capable of transmitting single-lane 112 Gb/s PAM-4 over 2 km of standard single-mode fiber without any electrical digital-to-analog converter, DSP, or long transmission line structures and terminations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.