Abstract

BackgroundOestrogen receptor (ER) positive (luminal) tumours account for the largest proportion of females with breast cancer. Theirs is a heterogeneous disease presenting clinical challenges in managing their treatment. Three main biological luminal groups have been identified but clinically these can be distilled into two prognostic groups in which Luminal A are accorded good prognosis and Luminal B correlate with poor prognosis. Further biomarkers are needed to attain classification consensus. Machine learning approaches like Artificial Neural Networks (ANNs) have been used for classification and identification of biomarkers in breast cancer using high throughput data. In this study, we have used an artificial neural network (ANN) approach to identify DACH1 as a candidate luminal marker and its role in predicting clinical outcome in breast cancer is assessed.Materials and methodsA reiterative ANN approach incorporating a network inferencing algorithm was used to identify ER-associated biomarkers in a publically available cDNA microarray dataset. DACH1 was identified in having a strong influence on ER associated markers and a positive association with ER. Its clinical relevance in predicting breast cancer specific survival was investigated by statistically assessing protein expression levels after immunohistochemistry in a series of unselected breast cancers, formatted as a tissue microarray.ResultsStrong nuclear DACH1 staining is more prevalent in tubular and lobular breast cancer. Its expression correlated with ER-alpha positive tumours expressing PgR, epithelial cytokeratins (CK)18/19 and ‘luminal-like’ markers of good prognosis including FOXA1 and RERG (p<0.05). DACH1 is increased in patients showing longer cancer specific survival and disease free interval and reduced metastasis formation (p<0.001). Nuclear DACH1 showed a negative association with markers of aggressive growth and poor prognosis.ConclusionNuclear DACH1 expression appears to be a Luminal A biomarker predictive of good prognosis, but is not independent of clinical stage, tumour size, NPI status or systemic therapy.

Highlights

  • Breast cancer is the most common cancer in females and the third most common cause of cancer death in the UK after lung and large bowel cancer [1]

  • Nuclear DACH1 showed a negative association with markers of aggressive growth and poor prognosis

  • For example the transferrin receptor, CD71, is involved in the uptake of iron and is expressed on cells showing high proliferation, and previously we reported it to be an independent prognosticator of an ER+ subgroup characterised by poor prognosis and resistance to endocrine therapy [10]

Read more

Summary

Introduction

Breast cancer is the most common cancer in females and the third most common cause of cancer death in the UK after lung and large bowel cancer [1]. It has recently been proposed that 10 molecular breast cancer groups exist [2], building on the overarching and simpler four group molecular stratification established more than a decade ago [3,4,5,6] The largest of these groups comprise oestrogen receptor (ER) positive (luminal) tumours with the latest evidence suggesting complex clinical diversity and mortality risk [2]. It has long been appreciated that the oestrogen receptor has a compelling role in breast cancer biology because its expression is both a predictive and independent prognostic factor for disease outcome, treatment response and recurrence in breast cancer [7]. We have used an artificial neural network (ANN) approach to identify DACH1 as a candidate luminal marker and its role in predicting clinical outcome in breast cancer is assessed

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.