Abstract

Discrete time Σ∆ modulators habitually use a multi-level uniform quantizer (UQ); with this type of quantizer the maximum resolution is reached around full scale and system stability is improved. In this work, we propose the use of a multi-level non uniform quantizer (NUQ) to improve resolution for low input amplitude signals. The proposed architecture is compared with a uniform quantizer, and the effect of feedback DAC mismatch is analyzed. Different DAC mismatch shaping techniques are tested to compare their effects on SNR and SFDR, focusing on rotational element selection and Bi-DWA. Simulations are performed with MATLAB using behavioral modeled blocks. Results indicate that DAC mismatch produces a noticeable SNR degradation in converters with non uniform quantizer; DAC mismatch shaping methods are compared, rotational element selection being better in terms of SNR and Bi-DWA is better in terms of SFDR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.