Abstract

In this paper, we propose a data aggregation back pressure routing (DABPR) scheme, which aims to simultaneously aggregate overlapping routes for efficient data transmission and prolong the lifetime of the network. The DABPR routing algorithm is structured into five phases in which event data is sent from the event areas to the sink nodes. These include cluster-head selection, maximization of event detection reliability, data aggregation, scheduling, and route selection with multi attributes decision making metrics phases. The scheme performs data aggregation on redundant data at relay nodes in order to decrease both the size and rate of message exchanges to minimize communication overhead and energy consumption. The proposed scheme is assessed in terms of packet delivery, network lifetime, ratio, energy consumption, and throughput, and compared with two other well-known protocols, namely “information-fusion-based role assignment (InFRA)” and “data routing for in-network aggregation (DRINA)”, which intrinsically are cluster and tree-based routing schemes designed to improve data aggregation efficiency by maximizing the overlapping routes. Meticulous analysis of the simulated data showed that DABPR achieved overall superior proficiency and more reliable performance in all the evaluated performance metrics, above the others. The proposed DABPR routing scheme outperformed its counterparts in the average energy consumption metric by 64.78% and 51.41%, packet delivery ratio by 28.76% and 16.89% and network lifetime by 42.72% and 20.76% compared with InFRA and DRINA, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.