Abstract

BackgroundDisabled homolog 2 interacting protein (DAB2IP) plays a tumor-suppressive role in several types of human cancers. However, the molecular status and function of the DAB2IP gene in esophageal squamous cell carcinoma (ESCC) patients who received definitive chemoradiotherapy is rarely reported.MethodsWe examined the expression dynamics of DAB2IP by immunohistochemistry (IHC) in 140 ESCC patients treated with definitive chemoradiotherapy. A series of in vivo and in vitro experiments were performed to elucidate the effect of DAB2IP on the chemoradiotherapy (CRT) response and its underlying mechanisms in ESCC.ResultsDecreased expression of DAB2IP in ESCCs correlated positively with ESCC resistance to CRT and was a strong and independent predictor for short disease-specific survival (DSS) of ESCC patients. Furthermore, the therapeutic sensitivity of CRT was substantially increased by ectopic overexpression of DAB2IP in ESCC cells. In addition, knockdown of DAB2IP dramatically enhanced resistance to CRT in ESCC. Finally, we demonstrated that DAB2IP regulates ESCC cell radiosensitivity through enhancing ionizing radiation (IR)-induced activation of the ASK1-JNK signaling pathway.ConclusionsOur data highlight the molecular etiology and clinical significance of DAB2IP in ESCC, which may represent a new therapeutic strategy to improve therapy and survival for ESCC patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call