Abstract

Due to inter-individual variances, cross-subject electroencephalogram (EEG)-based emotion recognition is a challenging task. In this paper, we construct a multi-branch Capsule network (named DA-CapsNet) based on domain adaptation to improve the performance of cross-subject EEG emotion recognition. To fully capture the various intensity characteristics of a single emotion, firstly, DA-CapsNet decomposes the source and the target domain EEG signals into four frequency bands and homomorphically groups the data in each band, and then extracts the differential entropy (DE) features for each group separately. Taking into account the spatial arrangement of the electrodes, the DE features are mapped into a two-dimensional matrix to form a homomorphic difference cube sequence (HDCS). Second, to enhance the feature information of the same emotion and accelerate the run efficiency of the network, a parallel structured multi-branch primary Capsual network (CapsNet) is constructed in this paper. The multi-branch primary CapsNet can effectively extract the aforementioned sequence discriminative features and fuse them as the input features of the capsule emotion classifier. Finally, to lessen inter-domain distribution discrepancies, we brought adversarial domain adaptation to improve the performance of cross-subject emotion recognition. Numerous tests are run on the three public datasets of EEG, and the results show that the proposed algorithm in this paper works well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call