Abstract
In recent years, object detection has become a popular direction of computer vision and digital image processing. All the research work in this paper is a two-stage object detection algorithm based on deep learning. First, this paper proposes the Deep_Dilated Convolution Network (D_dNet). That is, by adding the operation of dilated convolution into the backbone network, in this way, not only the number of training parameters can be further reduced, but also the resolution of feature map and the size of receptive field can be improved. Second, the Fully Convolutional Layer (FC) is usually involved in the re-identification process of region proposal in the traditional object detection. This too “thick” network structure will easily lead to reduced detection speed and excessive computation. Therefore, the feature map before training is compressed in this paper to establish a light-weight network. Then, transfer learning method is introduced in training network to optimize the model. The whole experiment is evaluated based on MSCOCO dataset. Experiments show that the accuracy of the proposed model is improved by 1.3 to 2.2% points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.