Abstract

Weakly-supervised object detection (WSOD) models attempt to leverage image-level annotations in lieu of accurate but costly-to-obtain object localization labels. This oftentimes leads to substandard object detection and lo-calization at inference time. To tackle this issue, we propose D <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> F2WOD, a Dual-Domain Fully-to-Weakly Supervised Object Detection framework that leverages synthetic data, annotated with precise object localization, to supplement a natural image target domain, where only image-level labels are available. In its warm-up domain adaptation stage, the model learns a fully-supervised object detector (FSOD) to improve the precision of the object proposals in the target domain, and at the same time learns target-domain-specific and detection-aware proposal features. In its main WSOD stage, a WSOD model is specifically tuned to the target domain. The feature extractor and the object proposal generator of the WSOD model are built upon the fine-tuned FSOD model. We test D <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> F2WOD on five dual-domain image benchmarks. The results show that our method results in consistently improved object detection and localization compared with state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.