Abstract

Device-to-device (D2D) network utilizes various communication methods and regional resource sharing mechanisms, which, despite the efficient and effective communications, may lead to a variety of security threats. Therefore, without the assistance from the base station, effective managing regional resources and protecting private data on mobile devices have become a major challenge in D2D networks. In this paper, we propose a reliability-based central node election mechanism in a D2D network, where the attribute information is collected, normalized, and weight-summed to acquire the reliability of each mobile device. The central node can therefore be elected by sorting the reliability of all mobile devices. Furthermore, we propose a security protection mechanism of private data based on homomorphic encryption in a D2D network, where homomorphic encryption is employed to implement secure data aggregate of ciphertext in the elected central node. Finally, theoretical analyses and simulation experiment verify the superior effectiveness and efficiency of the proposed schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.