Abstract

As modern software systems are increasingly developed for running in distributed environments, it is crucial to provide fundamental techniques such as dependence analysis for checking, diagnosing, and evolving those systems. However, traditional dependence analysis is either inapplicable or of very limited utility for distributed programs due to the decoupled components of these programs that run in concurrent processes at physically separated machines. Motivated by the need for dependence analysis of distributed software and the diverse cost-effectiveness needs of dependence-based applications, this paper presents D$^2$ABS, a framework of dynamic dependence abstraction for distributed programs. By partial-ordering distributed method-execution events and inferring causality from the ordered events, D$^2$ABS abstracts method-level dependencies both within and across process boundaries. Further, by exploiting message-passing semantics across processes, and incorporating static dependencies and statement coverage within individual components, we present three additional instantiations of D$^2$ABS that trade efficiency for better precision. We present the design of the D$^2$ABS framework and evaluate the four instantiations of D$^2$ABS on distributed systems of various architectures and scales using our implementation for Java. Our empirical results show that D$^2$ABS is significantly more effective than existing options while offering varied levels of cost-effectiveness tradeoffs. As our framework essentially computes whole-system run-time dependencies, it naturally empowers a range of other dependence-based applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.