Abstract

In Parkinson's disease dopamine depletion imbalances the two major output pathways of the striatum. L-DOPA replacement therapy is believed to correct this imbalance by providing effective D1 and D2 receptor stimulation to striatonigral and striatopallidal neurons, respectively. Here we tested this assumption in the rat model of Parkinsonism by monitoring the spike response of identified striatal neurons to cortical stimulation. As predicted, in 6-hydroxydopamine lesioned rats we observed that L-DOPA (6 mg/kg + benserazide), apomorphine and the D2 agonist quinpirole (0.5 mg/kg i.p.) counteract the enhanced responsiveness of striatopallidal neurons. Unexpectedly, the depressed responsiveness of striatonigral neurons was corrected by quinpirole whereas D1 stimulation exerted no (apomorphine, cPB) or worsening effects (L-DOPA, SKF38393 10 mg/kg). Therefore, quinpirole, but not D1 stimulation, restores functional equilibrium between the two striatal output pathways. Our results might explain the therapeutic effect of D2-based medications in Parkinson's disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.