Abstract

This study examined the effects of D2-like dopamine receptor activation on Na+-K+-ATPase activity while apical-to-basal, ouabain-sensitive, amphotericin B-induced increases in short-circuit current and basolateral K+ (I(K)) currents in opossum kidney cells were measured. The inhibitory effect of dopamin on Na+-K+-ATPase activity was completely abolished by either D1- or D2-like receptor antagonists and mimicked by D1- and D2-like receptor agonists SKF-38393 and quinerolane, respectively. Blockade of basolateral K+ channels with BaCl2 (1 mM) or glibenclamide (10 microM), but not apamin (1 microM), totally prevented the inhibitory effects of quinerolane. The K+ channel opener pinacidil decreased Na+-K+-ATPase activity. The inhibitory effect of quinerolane on Na+-K+- ATPase activity was abolished by pretreatment of opossum kidney cells with pertussis toxin (PTX). Quinerolane increased I(K) across the basolateral membrane in a concentration-dependent manner; this effect was abolished by pretreatment with PTX, S-sulpiride, and glibenclamide. SKF-38393 did not change I(K). Both H-89 (protein kinase A inhibitor) and chelerythrine (protein kinase C inhibitor) failed to prevent the stimulatory effect of quinerolane on I(K). The stimulation of the D2-like receptor was associated with a rapid hyperpolarizing effect, whereas D1-like receptor activation was accompanied by increases in cell membrane potential. It is concluded that stimulation of D2-like receptors leads to inhibition of Na+-K+-ATPase activity and hyperpolarization; both effects are associated with the opening of K+ channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.