Abstract
The formation of the (Mn4–Ca) center of the water oxidation complex (WOC) of Photosystem II (PSII) occurs via a complex post-translational assembly pathway involving the proteolytic processing of the D1 protein precursor and the light-driven assembly, termed photoactivation, of the (Mn4–Ca). Photoactivation consists of a sequence of light-activated steps, involving Mn oxidation, separated by ‘dark’ molecular rearrangements, which are necessary for creating the coordination environment for the incoming metals. Initially, only one high affinity Mn binding site exists in the apo-WOC, whereas the remaining metal binding sites are created during the photoactivation process. Although much progress has been made in defining these processes, the molecular details remain obscure. Recently, X-ray crystallographic analyses have begun to reveal the molecular structure of PSII raising the possibility of formulating tentative structure-based mechanisms for the proteolytic processing and (Mn4–Ca) photoassembly events. Here an attempt is made to review and assemble the current kinetic and structural data to begin to develop a plausible molecular model for the assembly of the (Mn4–Ca) with particular emphasis placed on the proteolytic processing of the D1 protein precursor and the nature of ‘dark’ rearrangements occurring on the assembly of the (Mn4–Ca).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.