Abstract

Whole-cell patch-clamp recordings of non-NMDA glutamatergic EPSCs were made from identified cholinergic neurones in slices of basal forebrain (BF) of young rats (P13-P18), to investigate the subtypes of calcium channels involved in dopamine D(1)-like receptor-mediated presynaptic inhibition of the EPSCs. The BF cholinergic neurones were pre-labelled by intracerebroventricular injection of a fluorescent marker, Cy3-192IgG. A D(1)-like receptor agonist, SKF 81297 (30 microM) suppressed the EPSCs reversibly by about 30%, and this inhibition was reproducible. Calcium channel subtypes involved in the glutamatergic transmission were elucidated using selective Ca(2+) channel blockers. The N-type Ca(2+) channel blocker omega-conotoxin (omega-CgTX, 3 microM) suppressed the EPSCs by 57.5%, whereas the P/Q-type channel selective blocker omega-agatoxin-TK (omega-Aga-TK, 200 nM) suppressed the EPSCs by 68.9%. Simultaneous application of both blockers suppressed the EPSCs by 96.1%. The R-type Ca(2+) channel blocker SNX-482 (300 nM) suppressed the EPSCs by 18.4%, whereas nifedipine, the L-type Ca(2+) channel blocker (10 microM), had little effect. In the presence of omega-Aga-TK, SKF 81297, a dopamine D(1)-like receptor agonist, had no effect on the EPSCs. On the other hand, SKF 81297 could still inhibit the EPSCs in the presence of either omega-CgTX, SNX-482 or nifedipine. SKF 81297 had no further effect on the EPSCs when external Ca(2+) concentration was raised to 7.2 mM in the presence of omega-Aga-TK, but could still inhibit the EPSCs in high Ca(2+) solution after omega-CgTX application. Forskolin (FK, 10 microM), an activator of adenylyl cyclase pathway, suppressed the EPSCs, and the FK-induced effect was mostly blocked in the presence of omega-Aga-TK but not that of omega-CgTX. These results suggest that D(1)-like receptor activation selectively blocks P/Q-type calcium channels to reduce glutamate release onto BF cholinergic neurones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.