Abstract

The deuterium?tritium (D?T) burning plasma characteristic in an aspect ratio A=2 tokamak reactor is studied based on a simple equilibrium configuration, the Soloviev-type configuration. Operation limits for the Troyon beta value and for the Greenwald density value as well as for the ITER H-mode confinement scaling are used as the benchmark. It is found that in addition to suitable elongation, large triangularity has advantage for arriving at high beta value and obtaining high fusion power output. Compared to the present ITER design, the A=2 system can have very good merit for the avoidance of disruptions by setting rather high edge q value while keeping relatively large total toroidal current. The main disadvantage of decreasing the aspect ratio is due to the loss of more useful space in the inward region that leads to the decrease of toroidal magnetic field in the plasma region, then worsening the fusion merit. Our analysis and calculation also present a trade-off in this respect. Due to simple equilibrium configuration assumed, some other important issues such as the bootstrap current alignment cannot be optimized. However, the present analysis can offer an insight into the advantages of the medium aspect ratio reactor system that is a blank in present-day tokamak study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call