Abstract

Attention-deficit/hyperactivity disorder (AD/HD) is a mild neurodevelopmental disorder with inattention, hyperactivity, and impulsivity as its core symptoms. We previously revealed that an AD/HD animal model, juvenile stroke-prone spontaneously hypertensive rats (SHRSP/Ezo) exhibited functional abnormalities in N-methyl-D-aspartate (NMDA) receptors in the prefrontal cortex. D-serine is an endogenous co-ligand that acts on the glycine-binding site of NMDA receptors, which is essential for the physiological activation of NMDA receptors. We herein performed neurochemical and pharmacological behavioral experiments to elucidate dysfunctions in D-serine metabolism (namely, biosynthesis and catabolism) associated to AD/HD.The serine enantiomers ratio (D-serine/D-serine + L-serine, DL ratio) in the medial prefrontal cortex (mPFC) and hippocampus (HIP) was lower in SHRSP/Ezo than in its genetic control. The level of D-amino acid oxidase (DAAO, D-serine degrading enzyme) was higher in the mPFC, and the level of serine racemase (SR, D-serine biosynthetic enzyme), was lower in the HIP in SHRSP/Ezo. Thus, changes in these enzymes may contribute to the lower DL ratio of SHRSP/Ezo. Moreover, a microinjection of a DAAO inhibitor into the mPFC in SHRSP/Ezo increased DL ratio and attenuated AD/HD-like behaviors, such as inattention and hyperactivity, in the Y-maze test. Injection into the HIP also increased the DL ratio, but had no effect on behaviors.These results suggest that AD/HD-like behaviors in SHRSP/Ezo are associated with an abnormal D-serine metabolism underlying NMDA receptor dysfunction in the mPFC. These results will contribute to elucidating the pathogenesis of AD/HD and the development of new treatment strategies for AD/HD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call