Abstract

D-Serine is localized in mammalian brain to a discrete population of glial cells near NMDA receptors, suggesting that D-serine is an endogenous agonist of the receptor-associated glycine site. To explore this possibility, we have compared the immunohistochemical localizations of D-serine, glycine, and NMDA receptors in rat brain. In the telencephalon, D-serine is concentrated in protoplasmic astrocytes, which are abundant in neuropil in close vicinity to NMDA receptor 2A/B subunits. Ultrastructural examination of the CA1 region of hippocampus reveals D-serine in the cytosolic matrix of astrocytes that ensheath neurons and blood vessels, whereas NR2A/B is concentrated in dendritic spines. By contrast, glycine immunoreactivity in telencephalon is the lowest in brain. During postnatal week 2, D-serine levels in cerebellum are comparable to those in adult cerebral cortex but fall to undetectable levels by day 26. During week 2, we observe parallel ontogeny of D-serine in Bergmann glia and NR2A/B in Purkinje cells, suggesting a role for astrocytic D-serine in NMDA receptor-mediated synaptogenesis. D-Serine in the radial processes of Bergmann glia is also well positioned to regulate NMDA receptor-dependent granule cell migration. In the inner granule layer, D-serine is found transiently in protoplasmic astrocytes surrounding glomeruli, where it could regulate development of the mossy fiber/granule cell synapse. D-Serine seems to be the endogenous ligand of glycine sites in the telencephalon and developing cerebellum, whereas glycine predominates in the adult cerebellum, olfactory bulb, and hindbrain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call