Abstract

Background and Objectives: Glycation and oxidative stress are the major contributing factors responsible for diabetes and its secondary complications. Aminoguanidine, a hydrazine derivative, is the only approved drug that reduces glycation with its known side effects. As a result, research into medicinal plants with antioxidant and antiglycation properties is beneficial in treating diabetes and its consequences. This investigation aimed to examine the efficacy of the aqueous extract of Nigella sativa seeds against the D-ribose-induced glycation system. Materials and Methods: The suppression of α-amylase and α-glucosidase enzymes were used to assess the antidiabetic capacity. UV-Visible, fluorescence, and FTIR spectroscopy were used to characterize the Nigella sativa seed extract and its efficacy in preventing glycation. The inhibition of albumin glycation, fluorescent advanced glycation end products (AGEs) formation, thiol oxidation, and amyloid formation were used to evaluate the extracts' antiglycation activity. In addition, the extent of glycoxidative DNA damage was analyzed using agarose gel electrophoresis. Results: The IC50 for the extract in the α-amylase and α-glucosidase enzyme inhibition assays were approximately 1.39 ± 0.016 and 1.01 ± 0.022 mg/mL, respectively. Throughout the investigation, it was found that the aqueous extract of Nigella sativa seeds (NSAE) inhibited the level of ketoamine, exerted a considerable drop in fluorescence intensity, and reduced carbonyl production and thiol modification when added to the D-ribose-induced glycation system. In addition, a reduction in the BSA-cross amyloid formation was seen in the Congo red, thioflavin T assay, and electrophoretic techniques. NSAE also exhibited a strong capability for DNA damage protection. Conclusion: It can be concluded that Nigella sativa could be used as a natural antidiabetic, antiglycation treatment and a cost-effective and environmentally friendly source of powerful bioactive chemicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call