Abstract

When the error distribution in a regression model is asymmetric, the second-order least squares estimator (SLSE) is more efficient than the ordinary least squares estimator. This result motivated the research in Gao and Zhou (J Stat Plan Inference 149:140–151, 2014), where A-optimal and D-optimal design criteria based on the SLSE were proposed and various design properties were studied. In this paper, we continue to investigate the optimal designs based on the SLSE and derive new results for the D-optimal designs. Using convex optimization techniques and moment theories, we can construct D-optimal designs for univariate polynomial and trigonometric regression models on any closed interval. Several theoretical results are obtained. The methodology is quite general. It can be applied to reduced polynomial models, reduced trigonometric models, and other regression models. It can also be extended to A-optimal designs based on the SLSE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.