Abstract
In this paper, we investigate surfaces in singular semi-Euclidean space $\mathbb{R}^{0,2,1}$ endowed with a degenerate metric. We define $d$-minimal surfaces, and give a representation formula of Weierstrass type. Moreover, we prove that $d$-minimal surfaces in $\mathbb{R}^{0,2,1}$ and spacelike flat zero mean curvature (ZMC) surfaces in four-dimensional Minkowski space $\mathbb{R}^{4}_{1}$ are in one-to-one correspondence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.