Abstract

We study the properties and phenomenology of particle-like states originating from D-branes whose spatial dimensions are all compactified. They are non-perturbative states in string theory and we refer to them as D-matter. In contrast to other non-perturbative objects such as 't Hooft-Polyakov monopoles, D-matter states could have perturbative couplings among themselves and with ordinary matter. The lightest D-particle (LDP) could be stable because it is the lightest state carrying certain (integer or discrete) quantum numbers. Depending on the string scale, they could be cold dark matter candidates with properties similar to that of wimps or wimpzillas. The spectrum of excited states of D-matter exhibits an interesting pattern which could be distinguished from that of Kaluza-Klein modes, winding states, and string resonances. We speculate about possible signatures of D-matter from ultra-high energy cosmic rays and colliders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.