Abstract

Commonly the directly administered chemotherapy drugs lack targeting in tumor treatment. Thus, trying to improve cancer treatment efficiency led us to design a new intelligent system for cancer treatment. Considering these, in the current work, at first, the 2-aminoterephthalic acid (NH2-BDC) intercalated layered double hydroxides (MgAl-(NH2-BDC) LDH) were synthesized simply. Afterward, the in situ growth of the iron-based metal-organic frameworks in the presence of MgAl-(NH2-BDC) LDH occurred (MgAl-LDH/Fe-MOF). In the end, the reaction of MgAl-LDH/Fe-MOF with D-mannose (D-Man) achieved the MgAl-LDH/Fe-MOF/D-Man ternary hybrid nanostructure. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis confirmed the formation of the monodisperse Fe-MOF with nanosize in the presence of MgAl-LDH. Importantly, methotrexate (MTX) and doxorubicin (DOX) entrapment efficiency reached respectively about 28 wt% and 21% for MgAl-LDH/Fe-MOF/D-Man. The in vitro drug release experiments revealed a higher drug release at pH 5.0 in comparison with pH 7.4 which revealed its promising potential for anticancer drug delivery applications. Bioassay results revealed that the co-drug-loaded MgAl-LDH/Fe-MOF/D-Man has higher cytotoxicity on MDA-MB 231 cells. At last, fluorescence microscopy and flow cytometric analysis confirmed the successful uptake of MgAl-LDH/Fe-MOF/D-Man into MDA-MB 231 cell lines, as well as its bioimaging potential. A survey in the published literature approved that this work is the first report on the evaluation of the MgAl-LDH/Fe-MOF/D-Man for targeted co-delivery of both MTX and DOX. Finally, results collectively demonstrate the importance of the biocompatible MgAl-LDH/Fe-MOF/D-Man as a hopeful candidate for biomedicinal applications from the targeted co-drug delivery and bioimaging potential viewpoints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.