Abstract

Short-term road traffic speed prediction is a long-standing topic in the area of Intelligent Transportation System. Apparently, effective prediction of the traffic speed on the road can not only provide timely details for the navigation system concerned and help the drivers to make better path selection, but also greatly improve the road supervision efficiency of the traffic department. At present, some researches on speed prediction based on GPS data, by adding weather and other auxiliary information, using graph convolutional neural network to capture the temporal and spatial characteristics, have achieved excellent results. In this paper, the problem of short-term traffic speed prediction based on GPS positioning data is further studied. For the processing of time series, we innovatively introduce Dynamic Time Warping algorithm into the problem and propose a Long Short-Term Memory with Dynamic Time Warping (D-LSTM) model. D-LSTM model, which integrates Dynamic Time Warping algorithm, can fine-tune the time feature, thus adjusting the current data distribution to be close to the historical data. More importantly, the fine-tuned data can still get a distinct improvement without special treatment of holidays. Meanwhile, considering that the data under different feature distributions have different effects on the prediction results, attention mechanism is also introduced in the model. Our experiments show that our proposed model D-LSTM performs better than other basic models in many kinds of traffic speed prediction problems with different time intervals, and especially significant in the traffic speed prediction on weekends.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.