Abstract
A differential-algebraic geometric analogue of the Dixmier-Moeglin equivalence is articulated, and proven to hold for $D$-groups over the constants. The model theory of differentially closed fields of characteristic zero, in particular the notion of analysability in the constants, plays a central role. As an application it is shown that if $R$ is a commutative affine Hopf algebra over a field of characteristic zero, and $A$ is an Ore extension to which the Hopf algebra structure extends, then $A$ satisfies the classical Dixmier-Moeglin equivalence. Along the way it is shown that all such $A$ are Hopf Ore extensions
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.