Abstract

The active neurotoxin of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl-4-phenylpyridinium (MPP+), exerts its lethal effect by inhibiting Complex I of the electron transport chain (ETC). MPP+ shuts down aerobic oxidative phosphorylation and ETC-mediated ATP synthesis. The present investigation examines anaerobic survival during MPP+ toxicity in murine neuroblastoma cells Neuro 2-A (N2-A). MPP+ addition to the cells resulted in a reduction in cell viability, mitochondrial O 2 consumption (MOC) and ATP concentration in a dose-dependent manner. However, the addition of 10 mM of d-(+)-glucose prevented MPP+ toxicity, attenuated the loss of ATP, but did not reverse the complete inhibition of MOC, indicating substrate level phosphorylation and explicit anaerobic survival. Glucose addition prevented MPP+-mediated drop in ΔΨm, endoplasmic reticulum and intracellular organelle membrane potential tantamount to an increase of cell viability. Secondly, we examined the metabolic regulation of pyruvate dehydrogenase (PDH) and carnitine palmitoyl transferase (CPT) activities during glucose rescue. These enzymes exert control over acetyl CoA reservoirs in the mitochondria during aerobic metabolism. dl-6,8-Thioctic acid (PDH prosthetic group) and insulin slightly augmented metabolic rate, resulting in enhanced vulnerability to MPP+ in a glucose-limited environment. Additional glucose prevented these effects. Amiodarone (CPT inhibitor) and glucagon did not hamper or potentiate glucose rescue against MPP+. These data support strict anaerobic glucose utilization in the presence of toxic levels of MPP+. Moreover, the findings indicate that MPP+ exerts two distinct modes of toxicity (fast and slow death). With MPP+ (<1 mM), anaerobic glycolysis is operational, and toxicity is strictly dependent upon glucose depletion. MPP+ (1–10 mM) initiated acute metabolic collapse, with failure to sustain or switch to anaerobic glycolysis. In conclusion, overcoming energy failure against MPP+ may involve targeting rate-limiting controls over anaerobic energy pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call