Abstract

Water reabsorption in the proximal convoluted tubule of the rat kidney was examined by in vivo microperfusion techniques in order to examine the effect of D-glucose within the tubular lumen. When tubules were perfused with a balanced artificial solution containing Na, K, Cl, HCO3, urea, and D-glucose, absolute reabsorption averaged 4.01 +/- 0.24 nl/min per mm. Addition of D-glucose to the NaCl perfusate enhanced water reabsorption to values similar to those obtained with the balanced artificial perfusate. The enhanced water reabsorption consequent to the addition of D-glucose to the NaCl perfusion solution was completely inhibited by addition of phloridzin to the perfusate. The addition of an unabsorbed hexose, 2-deoxy-D-glucose, to the NaCl perfusate failed to enhance water reabsorption, whereas the addition of an incompletely reabsorbed sugar that is not metabolized, 3-O-methyl-D-glucose, resulted in partial enhancement of theabsolute rate of water reabsorption. These studies demonstrate that D-glucose has the specific effect of augmenting water reabsorption in the proximal tubule of the rat kidney.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.