Abstract

A new pi-d interaction system (EDT-TTFBr2)2FeBr4 (EDT-TTFBr2 = 4,5-dibromo-4',5'-ethylenedithiotetrathiafulvalene) and its nonmagnetic anion analogue (EDT-TTFBr2)2GaBr4 based on a brominated TTF-type organic donor are investigated. The salts featured by quasi-1D pi-electronic systems are metallic with metal-insulator transitions taking place at about 20 and 70 K for the FeBr4- and GaBr4- salts, respectively, where the low-temperature insulating state is associated with charge ordering or a Mott insulator followed by an antiferromagnetic transition at lower temperatures. The FeBr4- salt is featured with an antiferromagnetic transition of the anion d spins at a Neel temperature (TN) = 11 K, which is significantly high despite its long anion-anion Br-Br contact, suggesting the importance of the pi-d interaction in the magnetism. The surprisingly strong pi-d interaction, ca. -22.3 K estimated from the magnetization curve, evidences the usefulness of the chemical modification of the donor molecule with bromine substitution to achieve strong intermolecular interaction. The antiferromagnetic state of the anion d spins affects the transport of the conducting pi electrons through the strong pi-d interaction, as evidenced by the presence of a resistivity anomaly of the FeBr4- salt at TN. Below TN, the FeBr4- salt shows negative magnetoresistance that reaches -23% at the highest magnetic field investigated (B=15 T), whereas only a small positive magnetoresistance is observed in the pi-electron-only GaBr4- salt. The mechanism of the negative magnetoresistance is explained by the stabilization of the insulating state of the pi electrons by the periodic magnetic potential of the anion d spins in the FeBr4- salt, which is modified by applying the external magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.