Abstract

By means of ab initio computations and the global minimum structure search method, we have investigated structural, mechanical, and electronic properties of D-carbon, a crystalline orthorhombic sp3 carbon allotrope (space group Pmma [D2h5] with 6 atoms per cell). Total-energy calculations demonstrate that D-carbon is energetically more favorable than the previously proposed T6 structure (with 6 atoms per cell) as well as many others. This novel phase is dynamically, mechanically, and thermally stable at zero pressure and more stable than graphite beyond 63.7 GPa. D-carbon is a semiconductor with a bandgap of 4.33 eV, less than diamond’s gap (5.47 eV). The simulated X-ray diffraction pattern is in satisfactory agreement with previous experimental data in chimney or detonation soot, suggesting its possible presence in the specimen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.