Abstract

The room temperature d.c. current–voltage (I–V) characteristics of an Au/Pb2CrO5/SnO2 sandwich-structure 1.39 μm thick film have been measured for d.c. voltages, Vd.c., in the range 0.25 V≤Vd.c.≤5.0 V. These measurements were carried out under both dark and visible-light illumination conditions. For Vd.c.<2.5 V, the I–V curves of the sample in both dark and light environments were found to be non-linear and conform to space-charge-limited (SCL) current governed by traps uniformly distributed in energy. At higher d.c. voltages, a nearly Mott–Gurney V2 behaviour of the dark current has been observed, whereas the I–V behaviour of the illuminated specimen was a combination of an ohmic conduction and a V2 dependence at low illumination levels and became highly ohmic at large light intensities. This behaviour can be understood in terms of a reduction in the SCL dark current in favour of a larger ohmic d.c. photocurrent as a result of neutralization of the majority-carrier space charge by the photogenerated minority carriers of the electron–hole pairs produced under the illumination with visible light of energy ℏω≅EG(∼2.1–2.3 eV for the Pb2CrO5 material). The d.c. photocurrent, Iphot, at a fixed d.c. voltage, was found to follow a power-law dependence on light intensity, F, of the form Iphot∝Fγ, with the exponent γ being dependent on the applied d.c. voltage. At the low-voltage side (Vd.c.<1.5 V), γ∼0.5, a value usually obtained when the photoconductivity behaviour is governed by bimolecular recombination mechanisms. As the d.c. voltage is increased further, γ increases monotonically until it saturates at a value of about 0.9 for d.c. voltages beyond 3.5 V, where monomolecular recombination processes seem to be more operative with increasing d.c. voltage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call