Abstract
Csikós and Horváth proved in J Geom Anal 28(4): 3458-3476, (2018) that if a connected Riemannian manifold of dimension at least 4 is harmonic, then the total scalar curvatures of tubes of small radius about an arbitrary regular curve depend only on the length of the curve and the radius of the tube, and conversely, if the latter condition holds for cylinders, i.e., for tubes about geodesic segments, then the manifold is harmonic. In the present paper, we show that in contrast to the higher dimensional case, a connected 3-dimensional Riemannian manifold has the above mentioned property of tubes if and only if the manifold is a D’Atri space, furthermore, if the space has bounded sectional curvature, then it is enough to require the total scalar curvature condition just for cylinders to imply that the space is D’Atri. This result gives a negative answer to a question posed by Gheysens and Vanhecke. To prove these statements, we give a characterization of D’Atri spaces in terms of the total scalar curvature of geodesic hemispheres in any dimension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.