Abstract

Although D-allose (D-All) is a sugar with low natural abundance, it has great pharmacological and alimentary potential due to its biological properties. However, its chemistry, regarding the regioselectivity in protective reactions and glycosidations, has been scarcely explored. Glycobiological studies require appreciable quantities of carbohydrates with defined structures and high purity. Thus, the development of efficient strategies for their synthesis is crucial. In this frame, the knowledge of the regioselectivity between different hydroxyl groups of glycosyl acceptors is valuable because it allows minimizing the use of protecting groups. We have long been interested in the relative reactivity of OH-3 and OH-4 of glycosyl acceptors in glycosidation reactions. In this paper we synthesized D-allose glycopyranosyl acceptors with free OH-3 and OH-4 from D-Glc precursors. We assessed glycosidations with galactose trichloroacetimidates as donors and the experimental results were compared with those obtained by molecular modeling. Axial O-3 was the preferred site of glycosylation for α-anomers, whereas equatorial O-4 was the preferred site for a β-anomer. A good correlation between the experimental and modeling results was observed using atomic charges and cationic intermediates, although Fukui indices did not predict adequately the experimental results. The achieved regioselectivities are useful for the efficient design of oligosaccharide synthesis containing D-All moieties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.