Abstract

NIR-II fluorescence imaging (NIR-II FI) and photothermal therapy (PTT) have received broad attentions in precise tumor diagnosis and effective treatmentattributed to high-resolution and deep tissue imaging, negligible invasivity, and high-efficiency treatment. Although many fluorescent molecules have been designed and conducted for NIR-II FI and PTT, it is still an enormous challenge for researchers to pioneer some rational design guidelines to improve fluorescence brightness. Organic D-A-type molecules, including small molecules and conjugated polymers, can be designed and developed to improve fluorescence brightness due to their tunable and easy functionalized chemical structures, allowing molecules tailored photophysical properties. In this review, some approaches to the development and design strategies of D-A type small molecules and conjugated polymers for the enhancement of fluorescence brightness are systemically introduced. Meanwhile, some applications of PTT and PTT-based combination therapy (such as PDT, chemotherapy, or gas therapy) assisted by NIR-II FI-based single or multiimaging technologies are classified and represented in detail as well. Finally, the current issues and challenges of NIR-II organic molecules in NIR-II FI-navigated PTT are summarized and discussed, which gives some guidelines for the future development direction of NIR-II organic molecules for NIR-II FI-navigated PTT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call