Abstract
Following the 33rd America's Cup which featured a trimaran versus a catamaran, and the recent 34th America's Cup in 2013 featuring AC72 catamarans with multi-element wing sail yachts sailing at unprecendented speeds, interest in wing sail technology has increased substantially. Unfortunately there is currently very little open peer-reviewed literature available with a focus on multi-element wing design for yachts. The limited available literature focuses primarily on the structures of wings and their control, rather than on the aerodynamic design. While there is substantial available literature on the aerodynamic properties of aircrafy wings, the differences in the flow domains between aeroplanes and yachts is significant. A yacht sail will operate in a Reynolds number range of 0.2 to 8 million while aircraft operate regularly in excess of 10 million. Furthermore, yachts operate in the turbulent atmospheric boundary layer and require high maximum lift coefficients at many apparent wind angles, and minimizing drag is not so critical. This paper reviews the literature on wing sail design for high performance yachts and discusses the results of wind tunnel testing. Two wings with different symmetrical profiles have been tested at low Reynolds number with surface pressure measurements to measure the effect of gap geometry, angle of attack and camber on a wing sail's performance characteristic. It has been found that for the two element wing studied, the gap size and pivot point of the rear element have only a weak influence on the lift and drag coefficients. Reynolds number has a strong effect on separation for highly cambered foils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Proceedings of the Symposium on sports and human dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.