Abstract

The compositional distribution of elements is known to be significant for the high conversion efficiency of CZTSe solar cells. As detailed understanding of the Cu/(Zn+Sn) ratio in the light absorption layer is important, Cu2ZnSnSe4 (CZTSe) films grown via the co-evaporation process under different copper fluxes were characterized. It is difficult to evaluate the Cu content effect on the properties of CZTSe films grown using a co-evaporation process with Cu, Zn, Sn, and Se elemental effusion sources because the Cu flux variation during the process also induces other element ratio changes. Furthermore, the Zn/Sn ratio shows significant correlation to the Cu/(Zn+Sn) ratio variation in CZTSe thin films. Replacing the zinc metal effusion source with the ZnSe compound source resulted in less fluctuation in the Zn/Sn variation according to Cu flux change during the CZTSe co-evaporation. This can be useful in evaluating the effect of the different Cu ratios on the CZTSe solar cell characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.