Abstract
The experimental achievement of phosphorene, which exhibits superior electronic, physical, and optical properties has spurred recent interest in other Group 15 elemental 2D nanomaterials such as arsenene, antimonene, and bismuthene. These unique and superior properties of the pnictogen nanosheets have spurred intensive research efforts and led to the discovery of their diversified potential applications; for instance, optical Kerr material, photonic devices, pnictogen-decorated microfibers, high-speed transistors, and flexible 2D electronics. Previous studies have mainly been dedicated to study the synthesis, properties, and applications of the heavy pnictogens nanosheets; however, the toxicological behaviour of these nanosheets has yet to be established. Herein, the cytotoxicity study of pnictogen nanosheets (As, Sb, and Bi) was conducted over 24 h of incubation with various concentrations of test materials and adenocarcinoma human lung epithelial A549 cells. After the treatment period, the remaining cell viabilities were obtained through absorbance measurements with WST-8 and MTT assays. These findings demonstrate that the toxicity of pnictogen nanosheets decreases down Group 15, whereby arsenic nanosheets are considered to be the most toxic, whereas bismuth nanosheets induce low cytotoxicity. The findings of this study constitute an important initial step towards enhancing our understanding of the toxicological effects of pnictogen nanosheets in light of their prospective commercial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.