Abstract

The wide use in various fields and the great potentials in biomedical applications of carbon nanotubes highlight the need to study their toxicity and biocompatibility for recent years. This work aimed to investigate the cytotoxicity of carbon nanotubes on human embryonic lung fibroblast cells and their inter-related affecting factors. Three carboxyl modified carbon nanotubes, short carboxyl single-walled carbon nanotubes (SWCNTs-COOH), short carboxyl double-walled carbon nanotubes (DWCNTs-COOH) and short carboxyl multi-walled carbon nanotubes (MWCNTs-COOH) were chosen as subjects for the evaluation of carbon nanotubes cytotoxity. Different concentrations of carboxyl carbon nanotubes were incubated with human embryonic lung fibroblast (HELF) cells for 48 h, respectively, and the electron microscopy was used to observe the cell growth and morphology. The results showed that MWCNTs-COOH, which had a better dispersion in water was much more cytotoxic than the other two carbon nanotubes. From Cell Counting Kit-8 assay and acridine orange staining, MWCNTs-COOH could inhibit the cell growth and induce cell apoptosis with a dose–effect relationship and oxidative stress may be one of the mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.