Abstract

The cytotoxicity of fullerene C60 particles on two mammalian cell lines, i.e. the Chinese hamster ovary (CHO) cells and the Madin-Darby canine kidney (MDCK) cells, has been investigated. Although innate fullerene particles have a very low solubility in deionized (DI) water, these particles can be dissolved in the tetrahydrofuran (THF) solvent at a great value. Further, the dissolved fullerene particles in the THF solvent could be extracted into a DI water solution at a significantly increased solubility. The formation of fullerene particle aggregates is believed to be the cause of the increased solubility. Results presented here show that once the concentration of the fullerene aggregates reaches a certain level, the cells start to die. The lethal dosage LD50, which is defined as the lowest fullerene concentration that results in a 50% cell death within 24 h, has been determined. Furthermore, the percentage of cell mortality increased with increasing fullerene concentration and incubation time yielding a negative effect on cell viability. These results, illustrated by atomic force microscopy (AFM), dynamic light scattering (DLS) and other microscopic techniques, will help to better understand the side effects of fullerene particles in mammalian cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.