Abstract

BackgroundThe flora of Saudi Arabia is one of the richest biodiversity areas in the Arabian Peninsula and comprises very important genetic resources of crop and medicinal plants. The present study was designed to investigate the cytotoxicity and the antibacterial activities of the organic extracts from twenty six Saudi Arabian medicinal plants. The study was also extended to the investigation of the effects of the extracts from the four best plants, Ononis serrata (SY160), Haplophyllum tuberculatum (SY177), Pulicaria crispa (SY179), and Achillea beiberstenii (SY-200) on cell cycle distribution, apoptosis, caspases activities and mitochondrial function in leukemia CCRF-CEM cell line.MethodsA resazurin assay was used to assess the cytotoxicity of the extracts on a panel of human cancer cell lines whilst the microbroth dilution was used to determine the minimal inhibitory concentration (MIC) of the samples against twelve bacterial strains belonging to four species, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae and Pseudomonas aeruginosa.ResultsThe best activity on leukemia cell lines were recorded with SY177 (IC50 of 9.94 μg/mL) and SY179 (IC50 of 1.81 μg/mL) against CCRF-CEM as well as Ach-b (IC50 of 9.30 μg/mL) and SY160 (IC50 of 5.06 μg/mL) against HL60 cells. The extracts from SY177 and SY179 were also toxic against the seven solid cancer cell lines studied with the highest IC50 values of 31.64 μg/mL (SY177 against Hep-G2 cells). SY177 and Ach-b induced cell cycle arrest in G0/G1 and S phases whilst SY160 and SY179 induced arrest in G0/G1 phase. All the four plant extracts induced apoptosis in CCRF-CEM cells with the alteration of the mitochondrial membrane potential. In the antibacterial assays, only Ach-b displayed moderate antibacterial activities against E. coli and E. aerogenes ATCC strains (MIC of 256 μg/mL), AG100ATeT and K. pneumoniae ATCC strains (MIC of 128 μg/mL).ConclusionsFinally, the results of the present investigation provided supportive data for the possible use of some Saudi Arabian plants investigated herein, and mostly Haplophyllum tuberculatum, Pulicaria crispa, Ononis serrata and Achillea beiberstenii in the control of cancer diseases.

Highlights

  • The flora of Saudi Arabia is one of the richest biodiversity areas in the Arabian Peninsula and comprises very important genetic resources of crop and medicinal plants

  • More than 50% inhibition of the growth of CCRFCEM and HL60 were exhibited by the extracts from Achillea beiberstenii (SY-200; 76.27% and 66.22% respectively) as well as Ononis serrata (SY160; 64.32% and 71.16% respectively)

  • More than 50% growth inhibition of CCRF-CEM was recorded with Haplophyllum tuberculatum (SY177; 63.21%), Senna italica (SY178; 53.57%), Pulicaria crispa (SY179; 76.17%), Rhantarium epapposum (SY180; 66.71%), Anthemis deserti (SY185; 65.54%), Ziziphus nummularia (SY188; 74.99%), Rhazya strict (SY195; 66.63%) and Artemisia monosperma (SY198; 67.66%)

Read more

Summary

Introduction

The flora of Saudi Arabia is one of the richest biodiversity areas in the Arabian Peninsula and comprises very important genetic resources of crop and medicinal plants. The study was extended to the investigation of the effects of the extracts from the four best plants, Ononis serrata (SY160), Haplophyllum tuberculatum (SY177), Pulicaria crispa (SY179), and Achillea beiberstenii (SY-200) on cell cycle distribution, apoptosis, caspases activities and mitochondrial function in leukemia CCRF-CEM cell line. Medicinal plants constitute an important source of new candidates for therapeutic compounds, in regards to the chemical diversity found in several species. The present study was designed to investigate the cytotoxicity and the antimicrobial activities of twenty six Saudi Arabian plants against leukemia and carcinoma cell lines. The effects of the four best plants namely Haplophyllum tuberculatum, Pulicaria crispa, Ononis serrata and Achillea beiberstenii on cell cycle distribution, apoptosis, caspases activities and mitochondrial function in leukemia CCRF-CEM cells were investigated

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.