Abstract

Bioengineered hybrids are emerging as a new class of nanomaterials consisting of a biopolymer and inorganic semiconductors used in biomedical and environmental applications. The aim of the present work was to determine the cytocompatibility of novel water-soluble Bi2S3 quantum dots (QDs) functionalized with chitosan and O-carboxymethyl chitosan (CMC) as capping ligands using an eco-friendly aqueous process at room temperature. These hybrid nanocomposites were tested for cytocompatibility using a 3-(4,5-dimethylthiazol-2yl) 2,5-diphenyl tetrazolium bromide (MTT) cell proliferation assay with cultured human osteosarcoma cells (SAOS), human embryonic kidney cells (HEK293T cells) and a LIVE/DEAD® viability-cytotoxicity assay. The results of the in vitro assays demonstrated that the CMC and chitosan-based nanohybrids were not cytotoxic and exhibited suitable cell viability responses. However, despite the "safe by design" approach used in this research, we have proved that the impact of the size, surface charge and biofunctionalization of the nanohybrids on cytotoxicity was cell type-dependent due to complex mechanisms. Thus, these novel bionanocomposites offer promising prospects for potential biomedical and pharmaceutical applications as fluorescent nanoprobes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.