Abstract

Although positive associations exist between ambient particulate matter (PM2.5; diameter ≤ 2.5 μm) and the morbidity and mortality rates for respiratory diseases, the biological mechanisms of the reported health effects are unclear. Considering that alveolar macrophages (AM) are the main cells responsible for phagocytic clearance of xenobiotic particles that reach the airspaces of the lungs, the purpose of this study was to investigate whether PM2.5 induced AM apoptosis, and investigate its possible mechanisms. Freshly isolated AM from Wistar rats were treated with extracted PM2.5 at concentrations of 33, 100, or 300 μg/mL for 4 h; thereafter, the cytotoxic effects were evaluated. The results demonstrated that PM2.5 induced cytotoxicity by decreasing cell viability and increasing lactate dehydrogenase (LDH) levels in AMs. The levels of reactive oxygen species (ROS) and intracellular calcium cations (Ca2+) markedly increased in higher PM2.5 concentration groups. Additionally, the apoptotic ratio increased, and the apoptosis-related proteins BCL2-associated X (Bax), caspase-3, and caspase-9 were upregulated, whereas B cell lymphoma-2 (Bcl-2) protein levels were downregulated following PM2.5 exposure. Cumulative findings showed that PM2.5 induced apoptosis in AMs through a mitochondrial-mediated pathway, which indicated that PM2.5 plays a significant role in lung injury diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.