Abstract
Objectiveto compare conventional nanohybrid (Ceram.x Spectra) and ormocer-based (Admira fusion) dental composite resins effects on human dental pulp stem cells (hDPSCs) in terms of cytotoxicity, self-renewal, migration and osteogenic differentiation. MethodshDPSCs were cultured in presence of different dilutions (undiluted, form 1:2 to 1:100) of CeramX (CX) and Admira fusion (AD) eluates and viability assay in standard or osteogenic conditions were performed. Samples and eluates were prepared according to ISO 10993–12. In addition, apoptosis, self-renewal and migration activity evaluations were carried out. Osteogenic differentiation potential was tested by Alkaline Phosphatase Activity, alizarin red staining and gene expression of specific markers (ALP, RUNX2, OCN, OPN and COL1α1). Statistical analysis was performed by means of a One-way analysis of variance (One-way ANOVA) followed by a Tukey’s test for multiple comparison; results were presented as mean ± standard error of mean (SEM). ResultsAdmira Fusion demonstrated to be highly biocompatible and showed positive effects on hDPSCs proliferation and differentiation; on the contrary, conventional nanohybrid composite showed to be more cytotoxic and without any notable effect on stem cells differentiation. Moreover, the obtained results were further corroborated by a significant upregulation of osteogenic differentiation markers obtained in presence of ormocer-based composite resin eluate. Specifically, in AD 1:50 group expression levels of ALP, Runx2, Col1α1 were double than control (ALP, p = 0.045; Runx2, p = 0.003; Col1α1, p = 0.001) and CX 1:50 (ALP, p = 0.006; RUNX2, p = 0.029; Col1α1, p = 0.005). Moreover, in the same group, OPN and OCN resulted about 5 times more expressed as compared to control (OPN, p = 0.009; OCN, p = 0.0005) and CX 1:50 (OPN, p = 0.012; OCN, p = 0.0006). SignificanceThe less cytotoxicity obtained by AD than conventional nanohybrid composite may be attributed to a reduced monomers release in the oral environment, supporting the hypothesis of limited adverse effect and enhanced healing potential, mainly when the material is positioned in close contact with pulp tissue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.