Abstract
Several applications of copper oxide nanoparticles (CuONPs) have been documented in various fields, including healthcare, dentistry, medication delivery, tissue and cancer imaging, biolabeling, and biosensing. Therefore, this study aimed to synthesize CuONPs using the plant extracts of Camellia Sinesis (CS) and citrus limon (CL). The nanoparticles were then evaluated for their cytotoxicity, antibacterial, anti-inflammatory, and antioxidant activities. CuONPs were prepared using CS and CL through the green synthesis method. The Zone of Inhibition (ZOI) test was used to assess the antibacterial activity against strains of Staphylococcus aureus, Enterococcus faecalis, Streptococcus mutans, and Candida albicans. The albumin denaturation assay was used to assess the substances' anti-inflammatory activity. The cytotoxicity was determined by conducting the brine shrimp lethality test. Additionally, the antioxidant nature was tested using the 1,1-diphenyl-2-picryl hydrazyl method. CuONPs mediated by CS and CL were successfully synthesized. The nanoparticles demonstrated significant antimicrobial activity against the bacteria being studied, specifically S. aureus. The cytotoxic effect was observed to be the least when the concentrations were below 20 µL. A potent antioxidant effect, characterized by its maximum absorbance at 517 nm, was observed at a concentration of 50 µL. A significant anti-inflammatory effect was noted for all tested concentrations. The use of CS- and CL-mediated CuONPs demonstrates a favorable antimicrobial effect with reduced cytotoxicity, as well as improved anti-inflammatory and antioxidant effects at higher concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of International Society of Preventive & Community Dentistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.