Abstract

BackgroundMicro- and nano-sized plastics (MPs and NPs) have become an environmental issue of global concern due to their small size, strong bio-permeability and high specific surface area. However, few studies have assessed the effect of polystyrene MPs and NPs on human lung cells. In this research, we evaluated the cytotoxicity and genotoxicity of polystyrene (PS) MPs and NPs with different sizes (2 μm and 80 nm) and surface modification (carboxy and amino functionalized polystyrene, pristine polystyrene) in A549 cells.MethodsThe zeta potential and hydrodynamic particle size of five types of PS plastic solutions were measured by dynamic light scattering, and their morphology and degree of aggregation were observed by scanning electron microscopy. After incubation of the PS plastics with A549 cells, the uptake and toxicity of the cells were assessed by fluorescence microscopy, laser scanning confocal microscopy, flow cytometry, MTT, micronucleus formation assay, and reactive oxygen species.ResultsThe cytotoxicity and genotoxicity of A549 cells caused by nano-level PS is more serious than that of micro-level. Compared with unmodified PS-NPs, more surface-functionalized PS-NPs were found inside the cells, especially the accumulation of PS-NH2. Cell viability and the induction of micronuclei (MN) are appreciably impacted in a dose-dependent way. Compared with pristine PS-NPs, functionalized PS-NPs showed stronger cell viability inhibitory ability, and induced more MN scores.ConclusionThis study shows that the intrinsic size properties and surface modification of PS plastics, the interaction between PS plastics and the receiving medium, intracellular accumulation are critical factors for evaluating the toxicological influences of PS plastics on humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.