Abstract
Chloroform is a widely used industrial chemical that can also pollute the environment. The aims of this study were to examine the potential cytotoxicity and genotoxicity of chloroform on plant cells, using the Vicia faba bioassay. Chloroform was evaluated at concentrations of 0.1, 0.5, 1, 2, and 5mg·L-1. The following parameters were analyzed: the mitotic index (MI), micronucleus (MN) frequency, chromosomal aberration (CA) frequency, and malondialdehyde (MDA) content. The results showed that exposure to increasing concentrations of chloroform caused a decrease in MI and an increase in the frequency of MN in Vicia faba root tip cells, relative to their controls. Moreover, various types of CA, including C-mitosis, fragments, bridges, laggard chromosomes, and multipolar mitosis, were observed in the treated cells. The frequency of MN was positively correlated with the frequency of CA in exposure to 0.1-1mg·L-1 chloroform. Furthermore, chloroform exposure induced membrane lipid peroxidation damage in the Vicia faba radicle, and a linear correlation was observed between the MDA content and the frequency of MN or CA. These findings indicated that chloroform exposure can result in oxidative stress, cytotoxicity, and genotoxicity in plant cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.