Abstract

Bioengineered artificial skin substitutes (BASS) are the main treatment used in addition to autografts when skin injuries involve a large body surface area. Antiseptic/antibiotic treatment is necessary to prevent infections in the BASS implant area. This study aims to evaluate the effect of antiseptics and antibiotics on cell viability, structural integrity, and epidermal barrier function in BASS based on hyaluronic acid during a 28 day follow-up period. Keratinocytes (KTs) and dermal fibroblasts (DFs) were isolated from skin samples and used to establish BASS. The following antibiotic/antiseptic treatment was applied every 48 h: colistin (1%), chlorhexidine digluconate (1%), sodium chloride (0.02%), and polyhexanide (0.1%). Cell viability (LIVE/DEAD® assay), structural integrity (histological evaluation), and epidermal barrier function (trans-epidermal water loss, (TEWL), Tewameter®) were also evaluated. Cell viability percentage of BASS treated with chlorhexidine digluconate was significantly lower (p ≤ 0.001) than the other antiseptics at day 28. Compared to other treatments, chlorhexidine digluconate and polyhexanide significantly affected the epithelium. No significant differences were found regarding epidermal barrier. These results may be useful for treatment protocols after implantation of BASS in patients and evaluating them in clinical practice. BASS represent a suitable model to test in vitro the impact of different treatments of other skin wounds.

Highlights

  • The skin is the largest and one of the most complex organs in the human body, representing 15% of total adult body weight [1,2]

  • The epidermis is the outermost layer of the skin, consisting of a renewable epithelium whose main function is to prevent the entrance of foreign substances into the body while allowing water exchange through the skin

  • The main objective of this study was to develop a three-dimensional skin model based on hyaluronic acid scaffold to evaluate in vitro how different treatments, used in clinic, affect cell viability, epithelium integrity, and barrier function

Read more

Summary

Introduction

The skin is the largest and one of the most complex organs in the human body, representing 15% of total adult body weight [1,2]. Healthy skin is crucial to maintaining physiological homeostasis as it constitutes a protective barrier against external physical, chemical, and biological agents [3]. The dermis is the thickest layer located below the epidermis It is a connective tissue formed mainly by extracellular matrix and fibroblasts, which secrete collagen and elastin, providing mechanical strength, flexibility, and elasticity. Beneath this layer the hypodermis is found, an adipose tissue that supplies insulation, cushioning, and an energy storage area [1]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.